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Abstract 

We have explored methods for checkpointing and restarting processes within the Distributed object migration en- 
vironment (Dome), a C++ library of data parallel objects that are automatically distributed over heterogeneous 
networks of workstations (NOWs). System level checkpointing methods, although transparent to the user, were 
rejected because they lack support for heterogeneity. We have implemented application level checkpointing which 
places the checkpoint and restart mechanisms within Dome's C++ objects. Application level checkpointing has been 
implemented with a library-based technique for the programmer and a more transparent preprocessor-based tech- 
nique. Dome's implementation of checkpointing successfully checkpoints and restarts processes on different numbers 
of machines and different architectures. Results from executing Dome programs across a NOW with realistic failure 
rates have been experimentally determined and are compared with theoretical results. The overhead of checkpointing 
is found to be low, while providing substantial decreases in expected runtime on realistic systems. 
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1 Introduction 

Using clusters of workstations to solve large scientific problems is a current focus in the high performance computing 
field. While this method offers many advantages, it also creates some problems. Handling failures on one or more 
of the nodes in the cluster becomes an important concern. As the number of workstations in a cluster increases, 
the chance that one of them will fail during a particular computation increases exponentially. For example, on a 
workstation with a mean time between failures of 16 days, a one day computation may have 94% chance of completing 
successfully, while on a cluster of ten such machines, there is only a 54% (.9410) chance that a one day computation 
will complete before a failure occurs. Thus, it is vital that some kind of fault tolerance mechanism be incorporated 
into any system designed for extended execution on a workstation cluster. This paper discusses the implementation 
of fault tolerance mechanisms at various levels of programming abstraction and specifically describes the results of 
the initial implementation of some of these methods which have been developed for use with the Distributed object 
migration environment (Dome) [1, 2]. 

Dome is a system that is designed to provide application programmers a simple and intuitive interface for parallel 
programming in a heterogeneous environment. It is implemented as a library of C++ classes and uses PVM [10, 9] 
for its process control and communication. When an object of one of these classes is instantiated, it is automatically 
partitioned and apportioned among the nodes of the workstation cluster. Dome uses a single program multiple data 
(SPMD) model to perform parallelization of the program. In the SPMD model the user program is replicated on 
each machine in the cluster, and each copy of the program, executing in parallel, performs its computations on a 
subset of the data in each Dome object. For a more complete discussion of Dome, see [1]. 

A fault tolerance package for use with Dome can be implemented at various levels of programming abstraction. 
At the application level the programmer can call a set of C++ methods to checkpoint a program's data structures 
and to restart that program from the checkpointed data. This method provides a fault tolerance package which 
is highly portable since it uses no machine-dependent constructs in creating a checkpoint. The application level 
method is not transparent to the user, however, as it requires the application programmer to insert the calls to the 
checkpoint and restart mechanism. A refinement of the application level method uses a preprocessor to insert most 
of the checkpointing calls automatically. The use of a preprocessor offers the same advantages of portability while 
helping to reduce the work required of the application programmer. System level checkpointing methods periodically 
save the program's memory image upon interrupt. These methods are very simple to use, requiring no additional 
work of the programmer, and the program can be restored easily from the saved checkpoints. However, neither the 
implementation of the system level fault tolerance packages nor the checkpoint files that are produced are generally 
portable to other platforms. Furthermore, determining a consistent state for the program is a difficult issue since 
communication may be in progress between the distributed processes at checkpoint time. With the application level 
methods the knowledge of the program structure alleviates this problem. 

While they tend to require more work from the user, the application level fault tolerance methods mesh very 
well with the Dome system since both allow for easy portability to any system that supports PVM and C++. 
Furthermore, since Dome applications execute in a heterogeneous environment, it is vital that checkpoints created on 
one architecture are usable on others. Thus, this work concentrates on the design, development, and implementation 
of application level checkpointing features for Dome. 

This paper describes an implementation of an application level checkpoint and restart package for use with 
Dome, and benchmarks that have been collected using this package. Both a library-based checkpoint mechanism 
and a preprocessor-based mechanism are presented as well as a failure daemon to facilitate program restart in the 
presence of failures. Timings of a molecular dynamics application which uses Dome were collected. These timings 
indicate that even when checkpointing is performed very frequently, the overhead is low enough to provide a good 
expected runtime for an application. 

2 Checkpointing in Dome 

Dome programs are written using a library of distributed objects. These objects may be fragmented and the portions 
of each object distributed over a number of multi-user heterogeneous computers. Dome controls the distribution and 
layout of the objects and may alter that distribution periodically for load balancing purposes. The distribution 
and load balancing is transparent to the programmer. When programming in Dome, the parallelism is implicit 
in the operations performed on objects. For instance, the Dome distributed vector (dVector) class overloads the 
addition operator allowing for the parallel addition of two dVectors by simply writing a + b, where a and b are 



dVectors. By design, Dome programs use the single program multiple data (SPMD) model in parallelizing the 
work. All of the communication among tasks is done within the implementation of Dome objects; therefore, the 
user does not perform any explicit message passing. This design has several significant advantages with respect to 
a fault tolerance mechanism. Because Dome controls the distribution of a program's objects, it can also checkpoint 
this data in an architecture independent form, allowing the program to restart on a different architecture. Because 
communications operations are embedded within the objects, the user is free to place checkpoints into the program 
with few restrictions. Since Dome controls the mapping of data to processors, most Dome programs can be mapped 
to any number of processors. This allows Dome's restart mechanism the flexibility of mapping a Dome program to a 
different number of processors than were originally in use at the time of the checkpoint. Finally, the SPMD structure 
of Dome programs allows a checkpoint to be taken without global synchronization. These independently generated 
checkpoints can then be reconstructed into a global checkpoint whenever a restart is necessary. 

The model for this fault tolerance package assumes that all tasks will be fail-stop. That is, either the program runs 
to completion and produces the correct results, or the run terminates prematurely and informs the user of this fact. 
Currently the system detects the failure and attempts to restart the application from the most recent checkpoint. 
Failure notification is provided by the underlying system, PVM in this case. (See Section 2.5 for more details.) This 
work is not intended to address the question of program errors or arbitrary failure modes which may corrupt the 
program results without the user's knowledge. This model describes a fault tolerance package that periodically saves 
the current state of the distributed program to one or more checkpoint files and allows the program to be restarted 
from the most recent checkpoint after a failure. Once restarted, the program should proceed normally from the 
position of the last checkpoint. 

2.1    Application State 

There are several pieces of information which must be stored in order to restart a program successfully after failure. 
In general, this consists of the user memory, stack, registers, messages in transit, and relevant operating system 
variables. At checkpoint time, though, it is only necessary to save sufficient information to restart the program 
successfully from the checkpoint. 

The application level checkpoint and restart mechanism operates entirely in C++ code and, therefore, has no 
access to internal machine information such as register and stack values. In order to provide a portable package, it 
is important to restrict dependence on machine-specific information in the fault tolerance mechanism. The relevant 
state necessary to restart applications using an application level model consists of: 

• The program counter. The fault tolerance package must determine exactly where in the program the last 
checkpoint occurred. This can be difficult in an application level checkpointing mechanism. The problem is 
simplified in our application level model by guaranteeing that checkpoints will only occur at user-inserted calls 
to a dome_checkpoint() method. 

• The stack. A set of procedure calls will be active at the time of checkpoint. The stack must be restored so that 
the application can properly return from each procedure call after restart as if there had not been a failure. 
This information is difficult to save without looking into the values on the internal stack, and, once saved, 
reconstructing it upon restart is not easy. The checkpoint preprocessor described in Section 2.3 addresses this 
problem by inserting a set of procedure calls which keep track of the call stack so that it can be stored at the 
time of a checkpoint. 

• A subset of program variables. Since many program variables are temporary, their values are only relevant 
during certain parts of the program execution. Only the variables required to restore the program to the 
position of a given checkpoint need to be saved. For Dome programs this is defined as the set of all Dome 
objects. It is the responsibility of the programmer to ensure that the relevant data is encapsulated in Dome 
objects. For base types this is as simple as a slight change in variable declarations. For example, int becomes 
dScalar<int>, a templated Dome class that simply implements checkpoint and restart methods for scalars. The 
templated nature of this class facilitates its extension to other user defined data types. Checkpointing pointers 
and user-allocated memory, however, presents a bit of a challenge. These constructs could be addressed by a 
"Dome pointer" class whose allocation method would store the type and size of the allocated memory. Thus, 
the memory block can be saved during checkpoint, and re-allocated and loaded upon restart. For allocated 
memory which contains pointers, such as a linked list, this scheme will not work. New Dome objects would 



need to be created specifically for linked lists and similar structures. The object oriented structure of the Dome 
library makes this task tractable. It should also be noted that the C++ pass-by-reference mechanism replaces 
many of the uses of pointers in C. Thus, while these checkpointing methods for pointers and user-allocated 
memory are not fully general, they should be useful in most practical cases. 

• Communication state. In a general parallel program there may be messages in transit while a checkpoint 
is being written. In Dome, however, communication only occurs within calls to methods in the Dome library. 
The user does not make explicit communication calls. Thus, since the application level checkpoints are taken 
between calls to Dome methods, it is guaranteed that no communication state will need to be saved. This fact, 
in conjunction with the SPMD structure of Dome programs, allows for synchronization-free checkpointing. The 
current implementation synchronizes to create a single checkpoint file. A synchronization-free version would 
merge the independently created checkpoint files upon restart. 

• I/O state. If the program performs any I/O operations the fault tolerance mechanism must allow for proper 
restart of those operations. This can be an extremely difficult task depending on the variety or complexity of 
I/O operations being performed. The current model addresses only the issue of file I/O operations. In most 
cases files are simply read from or written to as a continuous stream. Therefore, our checkpoint method saves 
the file pointer at the time of checkpointing and opens the file at that location upon restart. File operations 
that do not fit this description present a greater challenge. For these operations a logging mechanism is needed 
so that changes to files can be undone. This case is not currently implemented in the Dome system. 

2.2    Library-Based Application Level Fault Tolerance 

In this section we describe the library-based application level checkpointing which is a foundation for the more user 
friendly preprocessor-based checkpointing subsequently described in Section 2.3. 

In library-based application level checkpoint and restart the fault tolerance package must operate entirely in C++ 
code without using machine-specific details, looking at the internal machine state, or requiring any special compiler. 
To do this successfully while minimizing the amount of code the user has to write, some restrictions must be placed 
on the programming model. It is likely, however, that a wide variety of scientific applications will adapt well to this 
model. A less restrictive application level fault tolerance model is described in Section 2.3. 

The model that a program must follow in order to use the library-based application level checkpointing package 
is illustrated in Figure 1. The program first initializes the Dome environment. By starting the program with the 
appropriate command-line arguments, the user may indicate that the program is to start from the beginning or restart 
from a saved checkpoint. Next the Dome variables, here consisting of distributed vectors (dVector) and distributed 
scalars (dScalar), are declared. dVectors are automatically distributed by the Dome library while dScalars are 
ordinary variables that are replicated in each process. All Dome variables are registered with the Dome environment 
upon declaration. The Dome environment maintains pointers to those variables and at program checkpoint time 
they are written to the checkpoint file. Therefore, all program variables which need to be saved to restart the 
application successfully must be declared as Dome variables. Dome uses templated objects to allow the application 
programmer considerable freedom in declaring Dome variables of different types. The overhead of using dScalars 
over normal C++ variables has been measured at only about 1-2% in the Dome molecular dynamics application. If 
the application is restarting, a Dome variable declaration causes the value of that variable to be read in from the 
checkpoint file. Following the variable declaration section, the program should execute its initialization code. If the 
program is restarting from a checkpoint file, the values of the program variables will have already been restored. 
In this case the initialization code is skipped. The programmer determines whether the program is restarting by 
making a call to is_dome_restarting(). 

Finally, there is a computational loop. This loop must be called directly from main(), and the loop termination 
function, loop_done () here, must be defined entirely in terms of Dome variables. Thus, if this loop is reached and the 
values of all Dome variables have been restored from the checkpoint file, the computation will resume exactly at the 
point that the last checkpoint was taken. At the end of the computational loop there is a call to dome_checkpoint(), 
which will checkpoint all the Dome variables in the environment. The dome_checkpoint() method only results in a 
checkpoint file being saved every nth call where n is set by a command-line parameter. 

This method effectively eliminates the need to restore the program counter. Since the state of the computational 
loop at the start of an iteration is defined entirely in terms of Dome variables and the checkpoint occurs at the end 
of an iteration, the computational loop can be resumed from the top on restart. Also, since the computational loop 



main(int arge, char *argv[]) 

{ 
// All Dome programs start by initializing the Dome environment. 
// Based on the arguments passed to the initialization method, 

// Dome determines whether the program is to start from the 

// beginning or restart from a saved checkpoint. 

dome_init(argc, argv); 

// Declare variables - Without the checkpointing package, the 

// dScalar<int> and dScalar<float> variables would simply be 

// declared as int and float variables. They are declared as 

// dScalars here so that they will be included in the checkpoint. 

* dScalar<int> integer_variable; 

* dScalar<float> float_variable; 
dVector<int> vector_of_ints; 

dVector<float> vector_of_floats; 

// etc. 

// initialization code - should be skipped if in restart mode. 
* if (!is_dome_restarting()) 

execute_user's_initialization_code(...); 

// computational loop 

while (!loop_done(...)) { // loop_done is a function of dome vars 
do_computation(...); 

* dome_checkpoint(); 
} 

} 

Figure 1: Skeleton program following the model required for application level checkpoint/restart. Lines marked with 
an asterisk are those that have been added or changed to allow operation of the fault tolerance package in the given 
Dome program 

is called from main(), no stack information needs to be saved. The variables are simply restored from the checkpoint 
file as they are declared, and on entry to the computational loop normal program execution can resume. 

Of course, this is a limited programming model. In particular, the requirement that the computational loop be 
called directly from mainQ may seem extremely restrictive. However, it has been observed in [8] that a majority 
of scientific programs are either fully or loosely synchronous, that is, all processes repeatedly execute a section of 
code and then synchronize. Therefore, a large proportion of these applications can easily be adapted to this model. 
Only minor changes were required, for example, to fit the Dome molecular dynamics application to this model. The 
benefits of checkpoint and restart in a large application easily outweigh the small one-time cost of performing this 
adaptation. 

2.3    Preprocessor-Based Application Level Fault Tolerance 

The previous section described a restricted programming model for application level fault tolerance. The restrictive- 
ness ofthat model simplifies the difficult task of saving and restoring the stack and the program counter. This section 
describes the use of a preprocessor to allow checkpoints to be taken at almost any point in the Dome application. 

To illustrate the problems solved by preprocessing, examine the program fragment in Figure 2. In order to 
restore the program to resume execution from the checkpoint in g(), two things must be done. First, the program 
counter must be set to the point just beyond that checkpoint to execute do_g_stuff_2.  Second, the stack must 



be in such a state that when g() exits, control returns to the point in f () immediately following the call to g() 
so that next_statement is executed. This is difficult to accomplish by providing simple library functions and 
presents the programmer with the daunting task of properly inserting the mechanisms to save and restore program 
counter and stack information. By using the preprocessing technique, many of the restrictions on programming style 
described in the previous section can be removed. It is still the programmer's responsibility to place the calls to 
dome_checkpoint() in the program, however the insertion of a checkpoint call is much simpler than the process 
required for using the library-based checkpointing technique. The programmer must also determine which program 
variables must be declared as Dome variables so that their values will be saved at the time of a checkpoint. 

f() { 
dScalar<int> i; 

do_f_stuff; 

g(i); 
next_statement; 

g(dScalar<int> &i) { 
do_g_stuff_l; 

dome_checkpoint(); 

do_g_stuff_2; 

> 

Figure 2: A program fragment before checkpoint preprocessing. 

The checkpoint preprocessor, however, can modify a Dome program automatically so that sufficient information 
is saved to restore the stack and program counter along with the required program variables upon restart. To 
accomplish this the preprocessor inserts sufficient labels and goto statements into the code to enable the program to 
visit every variable declaration and function call quickly, without executing any of the application's other code, until 
the state has been fully restored. Figure 3 shows the code fragment from Figure 2 after preprocessing. 

Before each procedure call that could lead to a checkpoint, such as the call tog() in f (), a call to dome_push() is 
inserted. This call pushes an entry onto the procedure call stack which is maintained within the Dome environment. 
The stack entry contains both the name of the procedure being called and a unique sequence number. The sequence 
number is necessary if there are multiple calls to the same procedure on the stack. On restart conditional goto 
statements ensure that the program state is restored to the position of the last checkpoint. Until the position of 
the last checkpoint is reached, the only statements executed are variable declarations to restore the Dome variables, 
procedure calls to restore the stack, and goto statements to restore the program counter. The percentage of procedure 
calls that can lead to checkpoints is very likely small. Therefore, code inserted by the preprocessor will not significantly 
increase the size or complexity of the program. 

Clearly the preprocessing method provides a much more flexible programming model than that described in the 
previous section. The application programmer is still responsible for inserting one or more calls to dome_checkpoint () 
in the program. However, this can be done almost anywhere in the code and is no longer restricted to a simple com- 
putational loop called from main(). 

An implementation of the preprocessor described here has been completed and has been successfully tested on 
Dome programs. Currently, more complex applications using Dome are being developed. These applications will be 
used for further testing of the checkpointing methods described here. 

An alternate method of checkpoint preprocessing could be implemented in which a call to dome_checkpoint() 
would be inserted by the preprocessor at the beginning of every procedure. This method would be completely 
user-transparent but would be likely to create considerable additional overhead. 



fO { 
dScalar<int> i; 

* if (is_dome_restarting()) { 

* next_call = dome_get_next_call(); 

* if (next_call == "gi") goto gl; 

* ... 
* > 

do_f_stuff; 

* dome_push(''gi''); 

* gl: 
g(i); 

* dome_pop(); 

next_statement; 

g(dScalar<int> &i) { 

* if   (is_dome_restarting()) 
* goto restart_done; 

do_g_stuff_i; 
dome_checkpoint(); 

* restart_done: 
do_g_stuff_2; 

} 

Figure 3: Program fragment after checkpoint preprocessing. Lines added by the preprocessor are marked with an 
asterisk. 

2.4    Implementation Details 

As can be seen from the previous examples, Dome programs are written in an SPMD style. A single C++ source 
program is replicated and executes in each parallel task. Dome is implemented as a library of C++ classes, and the 
underlying process control and message passing is provided by PVM. This makes the system very portable. To date 
it has been ported to eight architectures, including one MPP, the Intel Paragon. 

Besides using a library of C++ objects, Dome programs must conform to a particular programming style. For 
instance, Dome programs should not utilize the underlying message passing system explicitly. Dome objects must 
be the only source of messages if the checkpointing is to function properly. Another minor restriction is that the 
checkpoint method must be invoked in all tasks. Thus, the following code is invalid because it is likely that the 
checkpoint method would only be called by a subset of the Dome tasks. 

if  (randQ */, 2)  dome_checkpoint(); 

The initial Dome task will spawn several copies of itself on nodes across the network of machines to be used. 
The set of machines is defined by the underlying PVM system, i.e., the virtual machine. Dome objects typically 
consist of some large amount of data that is fragmented among the Dome tasks. When a Dome object is declared, 
the constructor for the object is invoked in all the Dome tasks currently executing. Based on parameters to that 
constructor, the data in the object will be mapped to the Dome tasks. In most cases this requires no communication. 



As the program runs, Dome records its execution rate on each machine. At predefined intervals, this information is 
exchanged and load balancing may be invoked. In the load balancing phase, Dome objects are re-mapped to match 
the past performance of the various machines. Some Dome operations require communication (such as a global sum) 
while others do not (pairwise binary operators, for example). Whenever a Dome object is created it registers with 
the Dome environment. This allows the Dome system to keep track of the distribution of data across the virtual 
machine. Furthermore, checkpoint and restore methods are defined for all Dome objects. The checkpoint method for 
each Dome object is called when the dome_checkpoint() method is invoked. At this point the Dome objects write 
out their internal state in XDR [19] format. In the preprocessor case the stack is also written to the checkpoint file. 
Upon restart the Dome object constructors test a global restart flag, and initialize their state from a checkpoint file 
if the flag is set. This allows the program state to be restored regardless of the architecture upon which the restart 
is occurring. Since the constructors dynamically perform the initial data mapping, the number of nodes at restart 
can differ from the number of nodes in use when the checkpoint was taken. 

In the current implementation a master task is used to write a single checkpoint for the distributed program. At 
the checkpoint call, all the nodes write to a Dome I/O stream which is routed to the master task. The master task 
then writes the checkpoint file to a shared file system. Each checkpoint file created has a unique name based on the 
number of checkpoints previously performed for this program. This naming convention prevents a checkpoint which 
fails before completing from overwriting a previously created valid checkpoint. A special end-of-checkpoint marker is 
placed at the end of a completed checkpoint file. Upon restart, the most recent file with its end-of-checkpoint marker 
intact is used for restart. 

2.5    Failure Daemon 

In order to provide complete checkpoint/restart functionality, a failure daemon has been created for use with Dome. 
This daemon, known as the cleaner, monitors active Dome programs. When a failure of one of the tasks of a Dome 
program is detected, the cleaner attempts to restart the Dome program from the last valid checkpoint. 

Only one cleaner process is run per PVM virtual machine, and that cleaner can monitor any number of concurrent 
Dome programs. When a Dome program begins it checks PVM's pvmd database for for an entry indicating the task 
id of the cleaner. If there is no entry or the task id given is no longer valid, that process will spawn a cleaner. The 
Dome program then registers with the cleaner, sending to the cleaner its program name, all command line arguments 
with which it was started, and the task ids that constitute that Dome program. 

The cleaner, when started, first determines whether another cleaner is running. If there is already a cleaner 
process running due to a race condition in the startup, the new cleaner exits. Otherwise, the new cleaner registers 
with PVM, sets its task id in the pvmd database for other Dome programs to access, and waits for a message from 
a Dome program. The first message that the cleaner should receive is a Dome program registration message. When 
this message is received, the cleaner stores the program name, command line arguments, and task ids sent by the 
Dome program. It then issues a pvm_notify() for all tasks in that Dome program so that it will receive a Dome 
task failure message if any of those tasks terminates. 

If the cleaner receives a Dome task failure message from the PVM daemon it issues a series of pvm_kill() 
commands to terminate all other tasks that are part of the same Dome program. It then finds the most recent valid 
checkpoint file for this program, and builds a command line from the Dome program name and arguments that were 
received when that program registered with the cleaner. The argument -dome_restart is added to (or modified 
in) the command line to indicate the checkpoint file from which to restart the Dome program. The cleaner then 
resubmits the Dome program with that command line to restart from the given checkpoint file. 

When a Dome task completes successfully, it sends a Dome task complete message to the cleaner. Upon receipt 
of this message the cleaner removes this task from the list of tasks being monitored. 

The cleaner process has been implemented to restart the whole Dome program rather than just the individual 
failed process. This procedure avoids the complications of rolling back existing processes. 

3    Qualitative Comparison 

A number of metrics can be used to compare the various levels of checkpointing. These metrics include usability, 
checkpointing cost, and portability. 

System level checkpointing is clearly the easiest method to use. It is completely transparent to the application 
programmer who does not have to make any program changes. Application level checkpointing with preprocessing, 



Level Transparency Portability Costs 
Application very weak 

transparency 
very portable code 
and checkpoints 

produces small 
checkpoints 

Application 
with 
Preprocessor 

almost transparent 
(but may interfere 
with debugging) 

very portable code 
and checkpoints 

produces small 
checkpoints 

System completely 
transparent 

neither code nor 
checkpoints portable 

produces large 
checkpoints 

Table 1: Comparison of levels of checkpointing. 

however, is only marginally more difficult to use. The user faces some restrictions, and debugging can be slightly 
more difficult, but it is still relatively transparent. Without preprocessing considerable effort may be required of 
the programmer in adapting an application to the model. A large proportion of scientific applications, however, are 
expected to fit the model well. 

The cost of a fault tolerance package can be measured in a number of ways. The most important cost is probably 
the added execution time of checkpoint creation. This will be examined empirically in Section 4. An important 
related metric, however, is the size of the checkpoint files. The creation of large files can significantly increase the 
cost of checkpointing. The system level checkpointing method produces very large checkpoints since, at best, it 
provides page level data granularity. System level methods also tend to save a large quantity of other information 
such as the complete stack contents. With the application level methods, however, only the Dome variables and a 
small amount of stack information are saved. This will produce significantly smaller checkpoint files. The Dome 
molecular dynamics application, for example, running as a single process creates a 10KB file with the application 
level checkpoint method. Using code from [14], the system level method, however, yields a 3.3MB file. 

Finally, the application level checkpointing methods have a distinct advantage over the system level methods 
since they use ordinary C++ code and do not require any system-specific details. Thus, they are portable between 
architectures. In addition, the checkpoints created by the application level mechanisms can be used to restore 
program execution on any cluster of machines regardless of the architecture. Figure 1 summarizes the advantages 
and disadvantages of these checkpointing methods. 

4    Checkpointing Results 

This section discusses the results obtained thus far using application level checkpointing with Dome. It first presents 
a set of predicted results for the average total runtime of applications using this checkpointing method. These 
predictions use a formula based on the time to checkpoint, the total runtime if there are no failures, and an estimate 
of the failure rate. Then a set of actual measured runtimes are presented for checkpoint and restart of the Dome 
molecular dynamics application using the application level mechanisms described. These timings were collected for 
various failure rates and checkpointing frequencies. 

4.1    Predicted Results 

Most of the research in program checkpointing has focused on measuring the overhead of creating a checkpoint. A 
fault tolerance package is used, however, when failures are anticipated. Checkpointing in this situation ultimately 
reduces the time required for a program to run to completion. Thus, it is more useful to calculate the average total 
runtime of the application which is based on the checkpoint overhead and the failure rate. As discussed in [23], a 
Poisson distribution serves as an accurate model for the expected failure rate during a computation if the following 
assumptions are made: first, the chance of a failure occurring in any sufficiently small time interval is proportional 
to the size of the interval, second, the probability of multiple failures in the cluster in a given time interval is much 
smaller than the chance of a single failure, and, third, the probabilities of failures in non-overlapping intervals are 
independent. These seem to be a reasonable set of assumptions for making estimates of machine failure rates. 

Duda [5] has used this formulation to calculate the expected runtime of a program as follows: 



* = -(C+(C+-)(e^a) 
a 7 1)) (1) 

where 
t = 
T: 
a - 
C 

1- 

total expected time for a run 
program runtime in the absence of system failures 
uninterrupted program execution time between checkpoints 
time to create a checkpoint 
Poisson parameter, or l/(mean time between failures) 

The time required to detect the presence of a failure and recover from it is assumed to be negligible for now. Using 
this formula the expected runtime of a program can be computed based on the time to checkpoint, the total runtime 
if there are no failures, and an estimate of the failure rate. For additional mathematical treatments of program 
runtimes in the presence of failures, see [11, 26]. 

In order to get a general idea of the costs of our checkpointing package, short, successful runs of the Dome 
molecular dynamics application, md, were timed. The md application is based on a CM-Fortran program developed 
at the Pittsburgh Supercomputing Center. It simulates the interactions of a bounded set of argon atoms over a 
set of discrete time intervals. For this experiment the application was distributed on eight Dec Alpha workstations 
and timed while checkpointing at various frequencies. Then several possible values for the mean time between 
failures were used to compute the total expected time for a run of md in the presence of system failures using Eq. 1. 
Distributing md across eight machines, simulating 500 atoms for 700 iterations, checkpointing incurred a cost of only 
about 0.2% per checkpoint in a 26 minute run. Figure 4 plots the calculated runtime for various values of the mean 
time between failures based on Eq. 1 and actual program runtimes measured in the failure-free case. It is interesting 
to note that if a failure occurs every three minutes and sufficient checkpoints are taken, the expected runtime will 
not even double. Furthermore, if the same number of checkpoints are taken in a failure-free run, there is only an 
additional 3% cost in the total runtime. 
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Figure 4: Expected runtime for md vs. mean time between failures. 



In short program runs like the experiment described here, a system failure would not be expected. The results, 
however, scale well since the cost per checkpoint is constant for a given problem size. In md the computation 
complexity grows faster than the data size, so the checkpoint cost compared to the total runtime decreases. Thus, 
the runtimes for the checkpointing options given in Figure 4 should remain proportional for longer runs. In fact, the 
checkpointing cases would show additional improvement since the time to checkpoint is proportional to the problem 
size not the runtime. 

In an experiment measuring the failure rates of systems on the Internet, Long, Carroll, and Park [18] found that, 
depending on the system, the mean time between failures tended to be between 12 and 20 days. If 16 days is used 
as a rough estimate, a cluster of eight machines is likely to have a failure every 2 days on average. Since the results 
plotted in Figure 4 should remain proportional for longer runs, the units of the graph could reasonably be changed 
from minutes to days. Then, given a mean time between failures of 2 days, a properly chosen checkpoint interval 
would increase the expected runtime by only about 12 days over the failure-free case of about 25 days. Without a 
checkpoint and restart mechanism such a program would probably never complete successfully. 

4.2    Empirical Results 

In order to evaluate the effectiveness of the checkpointing methods described here, the md program was run with 
various checkpointing frequencies and failure rates. To simulate the various failure rates, the cleaner process was 
modified to induce failures in a distributed Dome program based on a Poisson distribution. This was done by calling 
alarraO with a calculated failure time and issuing a pvm_kill() for one of the tasks of the Dome program when 
the SIGALRM signal was received. 

The experiments described here were run on eight dedicated DEC Alpha workstations connected by a DEC 
Gigaswitch. The load balancing option of the Dome system was not used. To simplify the experiment, after an 
induced failure the program was restarted on the same virtual machine that it had been using prior to the failure. 
This prevented the cleaner process from having to maintain a pool of available machines to add to the PVM virtual 
machine after each failure. It is interesting to note, however, that, although measurements of this case were not 
made, the architecture of Dome would have allowed the program to be restarted on fewer machines than it had 
previously been running on if that number of machines were no longer available after the failure. 

Figure 5 plots the observed runtime for various mean times between failures and checkpointing frequencies. 
Unlike the predicted results presented in Section 4.1, the completion times plotted here were measured for actual 
program runs in the presence of failures. Failures were induced in the application by the cleaner process based on 
Poisson distributions using varying values for the mean time between failures. Given the assumptions discussed in 
Section 4.1, a Poisson distribution with a mean time between failures of L for sufficiently small intervals of size h 
gives a probability of failure of approximately h/L. One second was chosen in this experiment as the interval over 
which to test for the probability of a failure. Therefore, since the probability of a failures in disjoint intervals is 
independent, our cleaner process simply loops through the succeeding seconds in the run and, using the randomQ 
function, calculates the next failure time for that run with the given mean time between failures. 

The sharp "L" shape of the no checkpointing curve in Figure 5 indicates that the program cannot recover after 
a failure because our checkpoint and restart mechanisms are not in operation for those runs. Comparing figures 4 
and 5 one can see that the actual behavior of the system closely adheres to our model. 

There are several factors which contribute to the overhead of this checkpoint/restart method. These include the 
time to create a checkpoint file, the time between the failure and recognition of that failure, the time required to kill 
the remaining tasks and resubmit the program, the time to restore and redistribute the data from the checkpoint 
file, and the time required to re-execute steps performed from the time of the last checkpoint to the time of failure. 
As was previously noted, the time to create a checkpoint file was measured at 0.2% of the total runtime in md. 
Checkpoint creation time, however, is a function of the number and size of Dome variables used in the application 
and, therefore, will vary from application to application. The failure recognition time was measured as the time 
from the cleaner inducing failure to the receipt of a task failure notification from PVM. This time averaged 52.4 
milliseconds in these runs. The time to issue a pvm_kill () for each of the remaining processes and resubmit the job 
to restart from the appropriate checkpoint file averaged 103.9 milliseconds. Like the checkpoint file creation time, 
the time to restore and redistribute checkpointed data is a function of the application. In the measurements of md 
collected, this cost was seen to be approximately 2% of the total runtime in the case of a single restart. 

Any checkpoint and restart package to be used with the Dome system must be highly portable. The portability 
of our checkpointing package has been demonstrated by running md with checkpointing on both DEC Alpha and SGI 
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Figure 5: Measured runtime for md vs. time between failures. 

workstations. Furthermore, the portability of the checkpoints themselves has also been successfully accomplished by 
restarting md on Alpha workstations from checkpoints created on SGI workstations. 

5 Integration with Condor 

We have created a prototype implementation of Dome that is integrated with the Condor [17] system. Condor 
provides mechanisms for the migration of sequential processes among a pool of monitored workstations. This allows 
for efficient use of idle cycles in a NOW. 

Our integration of Dome with Condor leverages Condor's monitoring facilities to perform the initial distribution 
of the Dome tasks onto a number of workstations. The Dome program which is running uses the checkpoint and 
restart mechanism described in this paper to save periodic checkpoints. If the load characteristics of any of these 
workstations exceed a given set of parameters, Condor will terminate the Dome task that is running on that machine. 
The Dome cleaner process then recognizes that one of the Dome tasks has died, terminates the remaining Dome tasks, 
and resubmits the entire Dome program to Condor to be restarted from the most recent checkpoint file. Condor will 
restart the program on a set of machines which meet the specified load requirements. 

This integration of Dome and Condor makes it possible to execute a Dome application on a number of workstations 
and then to migrate that Dome application to a different set of workstations when the load characteristics warrant. 
By using Dome's checkpoint mechanism the program can be migrated to a set of machines which differ both in number 
and m architecture. This malleability and flexibility can have a considerably positive effect on system throughput. 

6 Related Work 

A number of systems targeted at system level interrupt-driven checkpointing for parallel programs have been devel- 
oped recently. Li, Naughton, and Plank [15, 16, 21] have concentrated on minimizing the overhead of the individual 
checkpoints by using system level techniques related to memory protection and designing special algorithms to take 

11 



advantage of multicomputer architectures. Silva and Silva [24] have designed a system to account for the latency 
between failure occurrence and failure detection. Another system, designed by Leon, Fisher, and Steenkiste [14], 
is specifically tailored to checkpoint and restart multicomputer applications written in PVM. All of these systems 
depend on machine-specific code, however, and none provides checkpoints that are portable within a heterogeneous 
environment. 

Silva, Veer, and Silva [25] have developed an application level checkpointing system for distributed programs. 
Their primary focus is also to minimize the cost of individual checkpoints. Some studies such as [6], however, 
have suggested that checkpointing generally tends to be an inexpensive operation. Therefore, our fault tolerance 
package focuses on other issues. The approach described in this paper uses object-oriented techniques to create a 
user-transparent and fully portable checkpoint and restart mechanism for distributed programs. 

Huang and Kintala [13] have built a system that provides several levels of software fault tolerance for client/server 
applications. They demonstrate that these mechanisms are quite useful in providing appropriate system behavior in 
terms of availability and data consistency. 

Plank et al. [22] have a unique approach which uses diskless checkpointing. They utilize a parity processor rather 
than a disk for storing processor state. Upon failure the parity processor is able to reconstruct the state of the 
failed processor from the parity and the state of the remaining processors. Application level information is used by 
the system to determine what state information to checkpoint. Their diskless checkpointing is integrated with the 
ScaLAPAK [7] linear algebra routines, allowing a user program to survive a fault that occurs while the program is 
within the instrumented ScaLAPAK library without incurring any disk access. If the program is to survive faults 
that do not occur while the program is executing the linear algebra library code, however, the programmer is required 
to save that state explicitly, perhaps using a traditional disk-based checkpointing mechanism. This work is similar 
to Dome's checkpointing mechanism in that it is integrated into a library and uses application level information. 

Peercy and Banerjee [20] have a fault tolerance mechanism that is similar to Dome in that they use high level 
information about the application's structure. Their approach leverages the structure of the Actor model to allow 
them to keep shadow processors up to date with sufficient information that the processors can be quickly reconfigured. 
Their approach suffers when the application is communication bound because it doubles the number of data messages. 
In contrast Dome's mechanism takes a more conventional approach by saving the checkpoints to stable storage rather 
than relying on shadow processes. 

Hofmeister and Purtilo [12] have written a preprocessor for saving the state of programs which use their Polylith 
system. While their primary focus is dynamic program reconfiguration rather than checkpoint and restart, their 
preprocessing method is somewhat similar to the one described here. 

7 Future Work 

There are a number of improvements to be made to our checkpointing system. Several of these improvements will 
help to reduce the checkpointing overhead further. These are described in studies such as [14, 15, 16, 24] and include 
checkpointing to memory rather than disk, using incremental or copy-on-write methods to reduce the amount of data 
saved, or creating "optimistic" local checkpoints at each process rather than synchronizing for a global checkpoint. 
The SPMD model makes this optimistic checkpointing very easy. Our failure daemon might also be expanded to 
handle the additional issues of I/O that are not currently addressed. 

Investigation has also begun on the use of our preprocessing method for general PVM programs. Checkpointing 
is much more challenging in a general PVM application since the set of variables that need to be checkpointed and 
the current location in the parallel program may be different in each process. Thus, unlike the checkpoint of a Dome 
program, the checkpoint of a PVM application must consist of a set of files, one per process, and the application 
must be restarted with the same number of processes. Synchronization is required at checkpoint time to ensure a 
consistent state, and a "snapshot" algorithm such as the one described by Chandy and Lamport [4] must be used to 
ensure that no messages are in transit. While this might be more expensive, it retains the advantage of completely 
machine-independent checkpoints, which should be very useful to PVM programmers. 

8 Conclusions 

Application level checkpointing has proven to be a useful method for implementing fault tolerance in SPMD parallel 
programming systems like Dome.  Application level fault tolerance sacrifices some user transparency but provides 
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complete portability of both the checkpointing code and the checkpoints themselves. Experiments have suggested 
that while incurring very small checkpointing costs, significant savings can be realized in the total expected runtime of 
a computation in the presence of failures. As our work on reducing the overhead and programmer effort required while 
increasing the efficiency and applicability of our system continues, our fault tolerance features will be a significant 
benefit to Dome programmers and are expected to lead to similar mechanisms for general message passing programs. 

9    Availability and Acknowledgements 

The Dome system, including the checkpoint and restart mechanisms described in this paper, were released in May 
of 1996. More information can be found on the Dome home page, http://www.cs.cmu.edu/~Dome. 

We would like to acknowledge Dennis Gannon's group for their work on the Sage++ compiler preprocessor 
toolkit [3]. This toolkit was used to build the preprocessor of Dome programs described in Section 2.3. 
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